- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Ngwira, Chigomezyo_M (2)
-
Astafyeva, Elvira (1)
-
Coffey, Victoria (1)
-
Crowley, Geoff (1)
-
Engebretson, Mark_J (1)
-
Gisler, Andrew (1)
-
Habarulema, John‐Bosco (1)
-
Jonah, Olusegun_F (1)
-
Nishimura, Yukitoshi (1)
-
Pulkkinnen, Antti (1)
-
Schuck, Peter_W (1)
-
Weygand, James_M (1)
-
Yizengaw, Endawoke (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract On 20 December 2015, three Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft detected a nightside magnetotail reconnection event in the early main phase of a major geomagnetic storm. The spacecraft (P5, P4, and P3) had their footprints located over North America near the Gillam ground magnetometer station in Canada. Multipoint observations, both in space and from the ground, allow for an examination of the spatiotemporal characteristics of the disturbance on the ground and the associated physical drivers in the magnetosphere and ionosphere. This study shows that the horizontal geomagnetic field d/dt localized (on the scale of 100–300 km) feature observed at Gillam ground magnetometer site was caused by an isolated substorm onset near that station driven by a nightside magnetotail reconnection event detected by three THEMIS spacecraft that were located near the central plasma sheet. A close inspection of equivalent ionospheric current and current amplitude maps derived from ground magnetometer measurements using the spherical elementary current system technique indicates that the location of the localization lies roughly between the upward and downward field aligned current system, which is consistent with other earlier studies. This event represents the first reported observation of ground d/dt localization that is directly linked to nightside magnetotail fast flow bursts and reconnection event during the onset phase of a major Geomagnetic disturbance (GMD).more » « less
-
Ngwira, Chigomezyo_M; Habarulema, John‐Bosco; Astafyeva, Elvira; Yizengaw, Endawoke; Jonah, Olusegun_F; Crowley, Geoff; Gisler, Andrew; Coffey, Victoria (, Journal of Geophysical Research: Space Physics)Abstract On 21–22 June 2015, three consecutive interplanetary shocks slammed into the Earth's magnetosphere. Immediately after the third shock at 18:36 UT on 22 June, marked by an exceptional sudden storm commencement with an amplitude of ΔSYM‐H = ∼106 nT, a major geomagnetic storm commenced. In the present study, a multi‐instrument approach comprising observations, data analysis, and modeling is used to examine the global ionospheric response. Results show that enhanced storm time processes produced major total electron content (TEC) variations at different latitudes, longitudes, and phases of the storm. A closer inspection of the TEC observations reveals strong longitudinal and hemispherical asymmetry. In addition, multiple equatorward and poleward propagating traveling ionospheric disturbances (TIDs) were detected in the TEC data. Equatorward propagating TIDs are consistent with vertical neutral winds simulated from Thermosphere‐Ionosphere‐Electrodynamics General Circulation Model; however, poleward TIDs were not reproduced in the model. We find that a combination of driving processes including enhanced high‐latitude injection, prompt penetration electric fields, disturbance dynamo effect, neutral winds, and composition changes were acting at different stages of the storm.more » « less
An official website of the United States government
